
分散システム

双見 京介（FUTAMI Kyosuke）
高田秀志（TAKADA Hideyuki）

2025年11月
1

第11回フォールトトレラント性（2）



高信頼クライアントサーバ間通信

• Point-to-point通信
– トランスポート層のプロトコルであるTCPにより高信頼な通信
が可能

– 複数経路を確保して信頼性を向上させるためのTCPの拡張
として，MTCP（Multipath TCP）がある

• 故障がある場合の遠隔手続き呼び出し
– クライアントサーバシステムにおけるクライアントやサーバ
のクラッシュ，メッセージの喪失への対処

– どこまで透過性を確保できるかが重要

2



RPCにおける障害の発生

• 障害の発生をどこまで隠蔽できるか
• 起こりうる障害を5つに分類

1. クライアントがサーバの位置を特定できない
2. クライアントからサーバへの要求メッセージが消失
3. サーバが要求を受けた後にクラッシュ
4. サーバからクライアントへの応答メッセージが消失
5. クライアントで要求メッセージ送信後に障害が発生

• それぞれの障害によって対処すべき問題が異なり，
異なる解決策が求められる

3



障害発生における問題と解決策(1)
1. クライアントがサーバの位置を特定できない

– 例えば，すべてのサーバがダウンしているなど
– 解決策の一つとして，例外を上げてユーザに通知することが考え
られるが，RPCの透過性が損なわれる

2. クライアントからサーバへの要求メッセージが消失
– クライアント側でタイマを設定しておき，制限時間内にサーバから
応答がない場合に要求メッセージを再送信する

3. サーバが要求を受けた後にクラッシュ
– クライアント側では，サービスが実行されたか否かを知る術がない
ため，特別な対処が必要

4

受信
実行
返信

要求

応答

サーバ

(a) 正常ケース

要求

応答なし

サーバ

(b) 実行後にクラッシュ

受信
実行
クラッシュ

要求

応答なし

サーバ

(c) 実行前にクラッシュ

受信
クラッシュ



サーバクラッシュに対する原理

• 「最低1回（at least once）」 セマンティクス
– サービスが最低でも1回は実行されることを保証
（1回以上の場合もあり得る）

– サーバの再起動を待って，同じ処理をもう一度試みる
• 「最大1回（at most once）」セマンティクス

– サービスが最大でも1回まで実行されることを保証
（0回の場合もあり得る）

– すぐに要求を諦めて例外を通知
• 何もしない

– サービスが実行されるかどうかについて何の保証もしない
– サーバからの応答がなくてもクライアントは何もしない

• 「厳密1回（exactly once）」セマンティクス
– サービスが必ず1回だけ実行されることを保証
– 最も望ましいが，実装する方法が一般には存在しない 5



障害に対する方策

6

常に行う

行わない

ACK受信時のみ

ACKを受信しない時の
み

クライアント

再送信の方策

DUP OK OK

OK ZERO ZERO

DUP OK ZERO

OK ZERO OK

DUP DUP OK

OK OK ZERO

DUP OK ZERO

OK DUP OK

ACK送信後に印刷する方策
M → P

MPC MC(P) C(MP)

印刷後にACK送信する方策
P → M

PMC PC(M) C(PM)

サーバ（印刷サービスを提供）

OK: 1回だけ印刷される
DUP: 2回印刷される
ZERO: 一度も印刷されない

M: ACKを送信
P: 印刷を実行
C: クラッシュ

クライアント側の方策とサーバ側の方策をどのように組み
合わせても厳密1回セマンティクスを実現できない

MPC：ACKを送信して印刷後，クラッシュした
MC(P)：ACKを送信後クラッシュし，印刷が行われなったどのような方策をとっても，サーバ

クラッシュのタイミングによっては
DUPやZEROになってしまう



障害発生における問題と解決策(2)

4. サーバからクライアントへの応答メッセージが消失
– 要求メッセージや応答メッセージが喪失したのか，サーバが単に遅
いだけなのか，クライアント側で感知することが不可能

– 解決策の一つとして，クライアント側で要求メッセージに通し番号を
付与し，サーバ側で同じ番号の要求メッセージを無視する

5. クライアントで要求メッセージ送信後に障害が発生
– サービス自体は実行されているが，応答を受け取るクライアントが
いない

– このような状態になった要求はオーファン（orphan）と呼ばれ，適切
に処分される必要がある

7



分散コミット（Distributed commit）
• ある操作が，グループ内のすべてのプロセスで実行され
るか，あるいは，どのプロセスでも実行されないかのどち
らかを保証（原子コミット）

• 2相コミット（Two-phase commit, 2PC）により実現
– 投票フェーズ

1. コーディネータは， VOTE_REQUEST メッセージをすべての参加者に送信
2. 参加者は，操作を確定する場合は VOTE_COMMIT，操作を取り消す場合
は VOTE_ABORT を返信

– 決定フェーズ
1. すべての参加者が VOTE_COMMITを応答した場合，コーディネータは操
作を確定することを決定し GLOBAL_COMMIT メッセージを送り，
VOTE_ABORT を応答した参加者が一つでもある場合は，操作を取り消す
ことを決定し GLOBAL_ABORT メッセージを送る

2. 参加者は， GLOBAL_COMMIT メッセージを受け取った場合はローカルに
操作を確定し， GLOBAL_ABORT メッセージを受け取った場合にはローカ
ルに操作を取り消す

8



2PCにおける状態遷移

9

INIT

WAIT

COMMIT
VOTE_REQUEST

ABORT COMMIT

VOTE_ABORT
GLOBAL_ABORT

VOTE_COMMIT
GLOBAL_COMMIT

INIT

READY

VOTE_REQUEST
VOTE_COMMIT

ABORT COMMIT

GLOBAL_ABORT
ACK

GLOBAL_COMMIT
ACK

VOTE_REQUEST
VOTE_ABORT

コーディネータ

参加者

INIT：初期状態
アプリケーションから COMMIT メッセージを受け
取ると，参加者に VOTE_REQUEST を送信

WAIT：参加者からの応答待ち状態
参加者の一つから VOTE_ABORT を受け取ると，
参加者に GLOBAL_ABORT を送信。参加者全員
から VOTE_COMMIT を受け取ると，参加者に
GLOBAL_COMMIT を送信

INIT：初期状態
コーディネータから VOTE_REQUEST を受
け取ると，操作を確定する場合には
VOTE_COMMIT，操作を取り消す場合に
はVOTE_ABORT を送信

READY：コーディネータからの応答待ち状態
GLOBAL_COMMIT を受け取ると操作を
確定。GLOBAL_ABORT を受け取ると操
作を取り消し



2PCにおける障害への対処
• タイムアウト（時間切れ）処理

– 参加者がINIT状態で待っている時
• 処理を取り消すことを決め，VOTE_ABORT をコーディネータに送信

– コーディネータがWAIT状態で停止している時
• すべての参加者に GLOBAL_ABORT を送信

– 参加者がREADY状態で停止している時
• コーディネータが復旧するまですべての参加者が待つ
• 参加者 P が他の参加者 Q に問い合わせ，下表の方針で取るべき行
動を決める

10

Qの状態 Pの取るべき行動

COMMIT 処理をCOMMIT

ABORT 処理をABORT

INIT 処理をABORT

READY さらに他の参加者に問い合わせる



回復

• 前方回復（Forward recovery） では，システムを実行可
能な新しい状態へ移行させる
– どのようなエラーが発生するのかを前もって知っておく必要が
ある

– 喪失したパケットを正常に受信されたパケットから構成する消
失訂正（Erasure correction）という手法が知られている

• 後方回復（Backward recovery）では，現在のエラー状態
から，以前の正しい状態へシステムを戻す
– システムの状態を逐一記録しておき，問題が発生した時に記
録された状態に復元する

– システムの状態を記録した各時点をチェックポイント
（checkpoint）という

– チェックポイントはRAID（Redundant Array of Inexpensive Disks）
のような安定ストレージに記憶される

11



メッセージログ収集

• チェックポイント作りと同時に採用
• 送信者ベースログ収集と受信者ベースログ収集
• 受信プロセスがクラッシュした際，最も新しいチェッ
クポイントを復活させ，送信されたメッセージを再生

12

チェック
ポイント
作り

障害

チェック
ポイント
作り

メッセージログ収集

復活

再生

ログ収集
動作時

回復時



チェックポインティング
• 分散システム全体として整合性のある分散スナップ
ショットを記録する必要がある
– プロセス P がメッセージの受信を記録していれば，そのメッ
セージの送信を記録しているプロセス Q が存在しなければ
ならない

– 最も最近の分散スナップショットが回復線（recovery line）と
して復元される

13

P1

P2

初期状態 チェックポイント

P2 から P1 への
メッセージ送信

回復線

整合性のない
チェックポイントの組み合わせ

故障

時間



独立チェックポイント作り

14

P1

P2

初期状態

故障

時間

• プロセスがお互いに独立してチェックポイントを保存
• 回復線を見つけられない場合，連鎖的にチェックポイ
ントを逆上る必要がある（ドミノ効果）

• 上図の場合では，初期状態のみ一貫性が取れている



15

協調チェックポイント作り

コーディネータ

プロセスA

プロセスB

CHECKPOINT_REQUEST

状態保存

状態保存

このメッセージは各プロセスでキューイングされる

CHECKPOINT_DONE

アプリケーション

キューイングされた

メッセージの実行

• すべてのプロセスが協調して状態を保存
• ドミノ効果が発生しない


