
分散システム

双見 京介（FUTAMI Kyosuke）
高田秀志（TAKADA Hideyuki）

2025年11月
1

第6回同期



はじめに

• 分散システムにおいてプロセスがどのように同期
を行うのかは重要

– 複数のプロセスが同時に共有資源にアクセスすることは
許されない

– 複数のプロセスはイベントの順序（例えば，どのメッセー
ジが先に送られたのか）について合意することが必要

• 分散システムにおける同期は，単一プロセッサや
マルチプロセッサのシステムにおける同期に比べ
て，かなり困難であることが多い

2



時計の同期
• プロセスは，OSへの関数呼び出しによって時刻
を知ることができる

– 集中システムにおいては，時刻は呼び出しの順に
並ぶ

– 分散システムにおいては，マシン間の時計のずれ
により，時刻が呼び出し順に並ばないこともある

• 各マシンが自身の時計を持っている場合，ある
イベントの後に起こったイベントに，より早い時
刻が割り当てられることがあり得る

• 分散システムにおいて，すべての時計を同期さ
せることは可能なのだろうか？

3



物理（Physical）クロック
• コンピュータには，時刻を保持する回路（ 「クロック」（clock）
と呼ぶ）が内蔵されている（実は「タイマ」（timer）の方が適した語）

• タイマは1秒間に決まった回数の割り込みを起こし，割り込
み処理により，ソフトウェア的に保持しているクロック（チッ
ク数）に1を加える

• クロックは，特定の過去の日時（1970年1月1日0時0分な
ど）からのチック数を表す

• 時計のズレを表す最大ドリフト率を 𝜌とすると，2つの時計
は，最後に同期してから 𝛥t が経過すると，最大 2𝜌𝛥t だけ
ずれる

• システムとして時計のズレを 𝛿以内に抑えたい場合は，最
低 𝛿/2𝜌毎に同期しなければならない

4



Network Time Protocol (NTP)
• クライアントは，正確な時刻を提供可能なサーバに問い合
わせを行う

• クライアント側の相対的な時刻のずれ 𝜃は，以下の式に
より計算できる

5

クライアント

時間サーバ

T1

T2 T3

T4

• クライアントは，自身の時刻印 T1 ととも
にサーバに要求を送信

• サーバは，自身の時刻印 T2 （受信時
刻）を記録し， T2 と送信時刻 T3 をクライ
アントへ返信

• クライアントはサーバからの返信の受
信時刻 T4を記録

𝜃 = 𝑇! −
"!#"" $ "##"$

! − 𝑇% =
"!#"" $ "$#"#

!



時刻合わせの例

6

クライアント

時間サーバ

T1
10:00:00

T2
10:00:11

T3
10:00:12

T4
10:00:03

𝜃 = "!#"" $ "$#"#
!

= %&:&&:%%#%&:&&:&& $ %&:&&:%!#%&:&&:&(
!

= 10

10:00:10

例えば
• クライアントとサーバ間のメッセージ
送信に1秒かかる

• サーバ側で要求を処理するのに1秒
かかる

とした場合には，以下のように計算できる

クライアントのクロックがサーバよりも10秒遅れていると仮定



Berkeleyアルゴリズム
• 正確な時刻を保持しているマシンが存在しない場合に利用
• 動作手順は以下のとおり

(a) 時間サーバは定期的にすべてのマシンに対して保持している時刻を知らせる
ように要求

(b) 時間サーバは，各マシンからの返答に基づき，時刻の平均を取る
(c) 時間サーバは，各マシンに対してどれだけ時刻を補正すべきかを送信

• 時間サーバの時刻は管理者により定期的に手動で修正

7

3:00

2:50 3:25

時間サーバ

(a)

3:00 3:00

3:00
3:00

2:50 3:25

(b)

-10 +25

0
3:05

3:05 3:05

(c)

+15 -20

+5



論理（Logical）クロック
• 複数のプロセスが「イベントの発生した順序」に合意する
• Lamportの論理クロック

– 事前発生（happens-before） という関係を定義
– a → bは「aは b より前に発生」と読む

8

状況1 プロセス

a b
時間

状況2

プロセス 1
a

時間

プロセス 2
b

時間
メッセージ



イベントへの時刻の割り当て

9

0
6

12
18
24
30
36
42
48
54
60

0
8

16
24
32
40
48
56
64
72
80

0
10
20
30
40
50
60
70
80
90

100

m1

m2

m3

m4

P1 P2 P3

クロックの進み具合が少しずつ異なる状
況で，3つのプロセスがメッセージの送信
をしあうと，例えば「時刻60に送ったメッ
セージが時刻56に到着する」（過去に到
着する）ということが発生する

0
6

12
18
24
30
36
42
48
70
76

0
8

16
24
32
40
48
61
69
77
85

0
10
20
30
40
50
60
70
80
90

100

m1

m2

m3

m4

P1 P2 P3

Lamportのアルゴリズムによりクロックを修正

P2 が

クロックを
調整

P1 が

クロックを
調整



イベントの順序付け

10

複製されたデータベース東京の
データセンター

大阪の
データセンター

100pt 追加 ptを1.1倍

トランザクション1 トランザクション2

• 地理的に離れたデータセンターに複製されたデータベースを想定
• ほぼ同時に複数のトランザクションが発生すると，実行順序により結果
に不整合が生じる可能性がある
– 東京：100pt追加→1.1倍→結果は1,210pt
– 大阪：1.1倍→100pt追加→結果は1,200pt

• すべてのデータセンターで同じ順序でトランザクション（イベント）を実行
する必要がある

1,000pt 1,000pt



全順序マルチキャスト

11

• 各マシンは，メッセージとその受信通知を論理クロックとともにすべて
のマシンに送る

• 各マシンは，自身のキューにメッセージと受信通知を論理クロック順に
並べる

• すべてのマシンからの受信通知が届いたメッセージをキューから取り
出してアプリケーションに配信する

6
12
18
24
30
36
42

3
6
9

13
15
31
34

m1 m2

ack1ack2

マシン1 マシン2

m1, 12 m2, 6

m1, 12
m2, 6

m1, 12

ack2, 30

m1, 12

ack1, 15

キューの変化

m2を配信

m2, 6 m2, 6

m1, 12
m2, 6

m1, 12

ack2, 30

m1, 12

ack1, 15

キューの変化

m1を配信 m2を配信 m1を配信



ベクタークロックと因果通信

• イベント間の「因果関係」をとらえる

• 因果的に先に受信されているべきメッセージがすべて受
信された場合にのみメッセージを配信する

12

P0
m

P1

P2

VC0=(1,0,0) VC0=(1,1,0)

VC1=(1,1,0)

VC2=(0,0,0) VC2=(1,0,0)

VC2=(1,1,0)

m*

P0は時刻(1,0,0)にメッセージ mを他のプロセスに送信。P1はそれを受信後，m*を
送信することになり（ m の受信と m* の送信は因果関係がある），それは m よりも
先にP2に配信された。この時点で，m* の P2への配信は mが受信されるまで延期
される。

delayed



相互排他（Mutual Exclusion）

• 共有リソースに対して，複数のプロセスが同
時にアクセスすることを防止

• 単一マシンにおいては，セマフォによる制御
が可能

• 分散システムにおいては，プロセス間のメッ
セージ通信を利用して実現する必要がある

13



集中アルゴリズム

• 単一プロセッサによる相互排他を模擬
• コーディネータが故障するとアルゴリズムが停止するため，
コーディネータが「単一障害点」（single point of failure）になる

14

0 1 2

C

要求 OK

コーディネータ

キューは空

(a) プロセス1がコーディネータに共有リソースへのアクセスを要求。許可される。
(b) 次に，プロセス2が同じ共有リソースへのアクセスを要求。コーディネータは返答せず（アク
セスが許可されないことを返答するのではないことに注意），プロセス2をキューに入れる。

(c) プロセス1が共有リソースを開放すると，コーディネータはプロセス2にアクセス許可を返答。

0 1 2

C
返答なし

2

0 1 2

C

開放 OK要求



分散アルゴリズム

• コーディネータの存在を仮定しない
• いずれかのプロセスが故障するとアルゴリズムが動作し
なくなるという「故障n箇所性」（n points of failure）が存在

15

1

0

2

8 OK

(a) プロセス0とプロセス2が同時に共有リソースをアクセスしようとし，それぞれが自分の論理時
刻をブロードキャスト。

(b) 各プロセスは，アクセス要求を許可する場合にはOKメッセージを返信。この場合，プロセス0
がより小さい時刻印（8）を持つので，プロセス2よりも先に許可が与えられる。他のすべてのプ
ロセスから許可が与えられると，共有リソースを使用できる。

(c) プロセス0が共有リソースを使用後，プロセス2にOKメッセージを返信。

8

8

12

12

12

1

0

2

OK

OK

共有リソース
へアクセス

OK

1

0

2 共有リソース
へアクセス



トークンリングアルゴリズム

• それぞれのプロセスを番号付けしてリング状に配置

• トークンが失われたときや，プロセスが故障したときへの
対処が必要

16

0

2

4

6

1

5

3

7

トークン

• トークンがリング上を巡回
• 各プロセスは，隣のプロセスからトーク
ンを受信した際，共有リソースへのアク
セスが必要かどうかを調べる

• 共有リソースへのアクセスが必要な場
合，処理を続け，終了後，共有リソース
を開放

• その後，トークンを次のプロセスへ渡す
• 隣のプロセスからトークンを受信した際，
共有リソースへのアクセスが必要でな
い場合は，単にトークンを次のプロセス
へ渡す



非集中アルゴリズム

• 各リソースをN個に複製。各レプリカは，アクセスを制御す
るためのコーディネータを持つ。

• プロセスは，半数（m > N/2）を超えるコーディネータから許
可が必要。

• コーディネータがクラッシュした場合には，すぐに復旧でき
るが，クラッシュ前に与えた許可は失われることを想定。
つまり，他のプロセスに対して不正な許可を与える可能性
がある。

• 一方で，共有リソースへの不正なアクセスが発生する可
能性は無視できるほど小さい （例： N=8, m=6, stops 3 秒/
時停止の場合，10-18以下）。

17



相互排他アルゴリズムの比較

アルゴリズム アクセス・開放に
必要なメッセージ

数

アクセスまでに必
要なメッセージ数

問題

集中 3 2 コーディネータの故障

分散 3(n-1) 2(n-1) いずれかのプロセスの故障

トークンリング 1 to ∞ 0 to n-1 トークンの喪失，プロセスの故障

非集中 2mk+m, k=1,2… 2mk コーディネータの故障

18

• 集中アルゴリズムが最も単純で効率が良い
• いずれのアルゴリズムもプロセスの故障に対して対応が必要



選任アルゴリズム

• 多くの分散システムにおいて，コーディネータなどの
特別な役割をもつプロセスが必要

• それぞれのプロセスが一意に識別可能な番号を持
つと想定し，選任アルゴリズムによってその中で一
番大きな番号を持つもの見つけ出し，コーディネー
タとする

• 各プロセスは他のプロセスの番号を知っているが，
どれが動作中で，どれが停止中かを知らないと仮定

19



ブリー（bully）アルゴリズム

20

1

7

64

5

30

2
Election

Election

Election

(a) コーディネータが動作していないことを感知し
たプロセスは，選任を起動。例えば，プロセス4が
自分より大きな番号のプロセスへElectionメッ
セージを送信。

1

7

64

5

30

2
OK

OK

(b) 自分より小さい番号を持つプロセスから
Electionメッセージを受信した場合は，OKメッ
セージを返信。この場合，プロセス5とプロセス6
からの返信により，プロセス4は動作を停止。

1

7

64

5

30

2

(c) プロセス5と6が選任を起動し，
Electionメッセージを送信。

Election

Electio
nEl

ec
tio

n

1

7

64

5

30

2

(d)プロセス6からの返信によりプロセ
ス5が停止。

OK

1

7

64

5

30

2

(e)他のどのプロセスからも返信を受信しな
ければ，コーディネータとして選任されたも
のとして，それを他のプロセスに宣言。

Coordinator



リングアルゴリズム

• 最初のプロセスは，自身のプロセス番号を含んだElectionメッセージを隣のプロセスに送信

• もし隣のプロセスが停止している場合は，リング上のその次のプロセスに送信

• 各プロセスは，受信したメッセージに自身のプロセス番号を追加して隣のプロセスに送信

• メッセージが最初のプロセスに戻ってきたら，メッセージの種別を”Coordinator”に変更し，もう
一度メッセージをリング上で回して，各プロセスにどのプロセスがコーディネータかを知らせる

21

0 2

46

1

5

37

• プロセス2と5が，前のコーディネータ
だったプロセス7が停止していることを
発見

• プロセス2と5は，Electionメッセージをリ
ング上で回し始める

• メッセージが一周したら，Coordinator
メッセージに変更してリング上で回す

[2]

Election
メッセージ

[2,3]

[5]

[5,6]

[5,6,0]


