
分散システム

双見 京介（FUTAMI Kyosuke）
高田秀志（TAKADA Hideyuki）

2025年11月

1

第5回名前



はじめに

• 分散システムにおいて，資源の共有，エンティティ
の同定，場所の参照を行うために，「名前」が用い
られる

• プロセスが名前付けされたエンティティにアクセス
できるように，「名前付けシステム」は名前解決を
行う
⁃ フラットな名前付け
⁃ 構造化された名前付け
⁃ 属性ベース名前付け

• 分散システムにおける名前付けシステムは，それ
自体が複数のコンピュータにまたがる分散システ
ムで実現されている

2



名前付け

• 「名前」は，エンティティ（プリンタ，ユーザ，ファイル
など）を参照するための文字列あるいはビット列
⁃ 名前（name）
⁃ アドレス（address）
⁃ 識別子（identifier）

• 「アドレス」は，エンティティのアクセスポイントの名前

• 「識別子」は，以下の性質を持つ名前
⁃ 1つの識別子は複数のエンティティを参照しない
⁃ 各エンティティは少なくとも１つの識別子により参照される
⁃ ある識別子は常に同じエンティティを参照し，再利用され
ない

3



名前，アドレス，識別子

• アドレスや識別子は，ビット列のような機械読み込み
可能な形式（machine-readable form）でのみ表現

• ヒューマンフレンドリーな名前（human-friendly 
name）は，人間にとって読みやすいような形式を持つ
例 /Users/htakada/Documents/slides.ppt

• 名前や識別子はアドレスに変換される必要がある
(name-to-address binding).

例 www.ritsumei.ac.jp → 133.19.170.14

4

ヒューマンフレンドリーな名前 IPアドレス



フラットな名前付け

• 名前に構造を持たない（フラットな）場合に対する
名前解決

• エンティティの識別子が与えられたときに，その
エンティティへのアクセスポイント（アドレス）を得る
⁃ ブロードキャスト方式
⁃ 転送ポインタ（Forwarding Pointers）
⁃ ホームベースアプローチ（Home-Based Approach）
⁃ 分散ハッシュテーブル（Distributed Hash Tables）
⁃ 階層的アプローチ（Hierarchical Approach）

5



ブロードキャスト方式
• Address Resolution Protocol （ARP）で利用
• IPアドレスを元に，通信に必要なMACアドレスを得る
• （例）エンティティ１がエンティティ４と通信したい場合
① エンティティ１がすべてのエンティティに通信先のIPアドレスを
自身のIPアドレス・MACアドレスと共に送信

② 受信したIPアドレスが自分のものと一致した場合は，自身の
MACアドレスをエンティティ１に送信，一致しない場合は無視

6

IPアドレス：192.168.1.12
MACアドレス：00:3e:e1:cb:1b:57

エンティティ１

IPアドレス：192.168.1.1
MACアドレス：00:1e:0b:dd:66:53

エンティティ２

IPアドレス：192.168.1.11
MACアドレス：00:1d:73:ff:8a:ff

エンティティ３

IPアドレス：192.168.1.2
MACアドレス：00:26:ab:9e:98:8c

エンティティ４

① 192.168.1.2

① 192.168.1.2
① 192.168.1.2

② 00:26:ab:9e:98:8c

② 無視

② 無視



転送ポインタ

• エンティティがアドレス空間Aからアドレス空間Bへ移動す
るとき，アドレス空間Aにアドレス空間Bへのポインタを残す

• クライアントは，エンティティが移動したとしても，ポインタを
たどることによって移動先のエンティティを発見可能

• ポインタの連鎖が長くなると効率が悪くなる。また，連鎖の
うち一つでも失われると，移動先エンティティにたどり着け
ない

7

アドレス空間A

エンティティ

アドレス空間B アドレス空間A

エンティティ

アドレス空間B

ポインタ

クライアント

発見

クライアント

発見



ホームベースアプローチ

• 大規模なネットワーク内でのモバイルエンティティの管理
• モバイルIPで利用

⁃ モバイル端末のホーム位置として固定のIPアドレスを割り当て（ホーム
エージェント）

⁃ モバイル端末はホームエージェントに自身の現在のアドレス（気付アド
レス）を登録

⁃ クライアントからモバイル端末に対する最初のメッセージはホームエー
ジェントに対して送信（①）

⁃ ホームエージェントは登録されているモバイル端末の気付アドレスをク
ライアントに送信（②）し，メッセージをモバイル端末へ転送（③）

⁃ 以降，クライアントはモバイル端末の気付アドレスを用いて通信（④）

8モバイル端末
の現在位置

モバイル端末
のホーム位置

移動

クライアント
① 最初のメッセージを送信

② 気付アドレスを送信

③ メッセージを転送
④ 以降のメッセージを直接送信



分散ハッシュテーブル（Chord）
• mビットの識別子でリングを構成
• 2m個の識別子の中からランダム
に実ノードを割り当て

• キーkを持つエンティティの情報
はid≧kとなる最小の識別子idを
持つ実ノード（succ(k)）に格納

• 効率化のため，実ノードはiと
succ(p + 2i-1)のペアを格納した
Finger tableを保持

• キーkが与えられたとき，succ(k)
を求めたい
⁃ いずれかの実ノードから探索を開始
⁃ ノードpで

succ(p+2i-1) ≦ k < succ(p+2i)
となるiをFinger tableで見つける

⁃ 実ノードsucc (p+2i-1)から探索を続ける

9

10

16

824

428

1220

2
3

5

6

7

9

10

11

14
13

15
18

17

19

22

21

23

26

25

27

30
29

31

1 4
2 4
3 9
4 9
5 18

Finger table

1 9
2 9
3 9
4 14
5 20

i succ(
p + 2

i-1 )

1 11
2 11
3 14
4 18
5 28

1 14
2 14
3 18
4 20
5 28

1 18
2 18
3 18
4 28
5 1

1 20
2 20
3 28
4 28
5 4

1 21
2 28
3 28
4 28
5 4

1 28
2 28
3 28
4 1
5 9

1 1
2 1
3 1
4 4
5 14

実ノード

ノード1から
k=26を探索

ノード28から
k=12を探索

m=5のChordリング
（通常は128または160）



階層的アプローチ

• 全体のネットワークをドメインに分割，各ドメインは複数のサブドメインに分割，最下位
のドメインはリーフドメインとなる

• 各ドメインDはドメイン内のエンティティを記録するディレクトリノードdir(D)を持つ
• リーフドメインR内のエンティティEのアドレスは，dir(R)の位置レコードに記録される
• リーフドメインRの親ドメインには，子ドメインへのポインタを位置レコードに記録する
• エンティティEの探索には，Eの位置レコードを記録しているドメインまで遡り，見つかれ
ば，子ドメインへのポインタを辿ってリーフノードへ到達する

10

ルートディレクトリノード
dir(T)

トップレベルドメインT

ドメインSに対する
ディレクトリノードdir(S)

ドメインS
（ドメインTの
サブドメイン）

リーフドメインR（ドメインSのサブドメイン）エンティティEの位置レコード
（Eの現在のアドレスを保持）

エンティティEの位置レコード
（ドメインRへのポインタを保持）

エンティティEの位置レコード
（ドメインSへのポインタを保持）

エンティティEの探索要求



構造化された名前付け

• 名前は「名前空間」で管理される

• 名前空間は，以下の２種類のノードをもつラベル
付き有向グラフ（「名前グラフ」）で表現される
リーフノード（leaf node）： 名前付けされ，属性値を持つ
エンティティを表す

ディレクトリノード（directory node）：１つ以上の出力枝を
持ち，それぞれの枝は名前によりラベル付けされる

• 出力枝のみを持ち，入力枝を持たないノードは
ルートノード（root node）と呼ばれる

11



名前グラフの例

12

n0

n1

n2 n3 n4

n5

home keys

elke
max

steen

.twmrc
mbox

keys

“/keys”
“/home/steen/keys”

“/home/steen/mbox”

n2: “elke”
n3: “max”
n4: “steen”

n1に格納されているデータ

パス名は N:<ラベル-1, ラベル-2, …, ラベル-n>で表され，パス中の枝に対応す
るラベルの並びを参照する
名前解決は，パス中のラベル名を辿ることで実行される

ハードリンク

n6

keys

“/keys”
n6に格納されているデータ

シンボリックリンク



リンクとマウント

• エイリアス（alias）とは，同じエンティティの別名であ
り，以下の２つの方法で実現される
ハードリンク（hard link）： 異なるパス名で同じノードを参照
シンボリックリンク（Symbolic link）：リーフノードに参照
ノードの絶対パス名を格納

• ディレクトリノードに，異なる名前空間のディレクトリ
ノードの識別子を格納することにより，異なる名前
空間を併合する（マウント（mount））
⁃ マウントポイント：ノードの識別子を格納しているディレク
トリノード

⁃ マウンティングポイント：異なる名前空間に存在している
ディレクトリノード

13



Network File System (NFS)

14

remote

マシン A

OS

vu

keys home

マシン B

OS

steen

keys

n
mbox

“nfs://flits.cs.vu.nl/home/steen”

mount 
point

mounting 
point

マシンBのノードnは，マシンAから /remote/vu/mbox という名前でアクセス可能
（ノードnがあたかもマシンAに存在しているようにユーザには見える）



名前空間の分散管理

15

com edu gov mil org net jp us

sun

eng

yale

cs eng

ai

robot

linda

acm ieee

jack jill

ac co

ritsumei

cs

www

nec

csl

グローバル層

index.html

部門管理層

マネージャ層

変更頻度低
要高可用性

要高スループット

変更頻度低
要高可用性

要高スループット

変更頻度高
要短応答時間



反復名前解決（Iterative name resolution）

16

クライアン
トのリゾル

バ

1. <nl, vu, cs, ftp>

2. #<nl>, <vu, cs, ftp>

ルート
名前サーバ

3. <vu, cs, ftp>

4. #<vu>, <cs, ftp>

nlノード
名前サーバ

5. <cs, ftp>

6. #<cs>, <ftp>

vuノード
名前サーバ

7. <ftp>

8. #<ftp>

csノード
名前サーバ

vu

cs

nl

ftp

<nl, vu, cs, ftp> #<nl, vu, cs, ftp>

• クライアントのリゾルバがルート名前サーバに完全なパス名を渡す
• ルート名前サーバはできる限りパス名を解釈し，次に問い合わせるべき名前サーバ
のアドレスと，未解決のパス名をクライアントに返す

• クライアントは次の名前サーバに未解決のパス名を渡す。これをパス名が解決される
まで繰り返す

• #<nl>はnlノードの
名前サーバのアドレス

• <vu, cs, ftp>は
未解決のパス名



再帰名前解決（Recursive name resolution）

17

クライアン
トのリゾル

バ

1. <nl, vu, cs, ftp>

8. #<nl, vu, cs, ftp>

ルート
名前サーバ

2. <vu, cs, ftp>

nlノード
名前サーバ

vuノード
名前サーバ

csノード
名前サーバ

<nl, vu, cs, ftp> #<nl, vu, cs, ftp>

• 名前サーバ自身が次の名前サーバに結果を渡す
• 反復名前解決に対して以下の利点を持つ
− 途中の名前サーバでのキャッシュが有効に働く
− クライアントと名前サーバが離れている場合に，通信コストが低下する

3. <cs, ftp>

4. <ftp>

7. #<vu, cs, ftp>

6. #<cs, ftp>

5. #<ftp>



The Domain Name System (DNS)

18

アプリケーション

スタブリゾルバ
（OS上）

① www.ritsumei.ac.jp?

フルサービス
リゾルバ

② www.ritsumei.ac.jp?

権威サーバ
（ルートゾーン）

③ www.ritsumei.ac.jp?

権威サーバ
（.jpゾーン）

④ 203.119.1.1 (NS)

198.41.0.4

⑤
www.ritsumei.ac.jp?

⑥
133.19.170.151 (NS)

権威サーバ
（ritsumei.ac.jp

ゾーン）

⑦
www.ritsumei.ac.jp?

203.119.1.1

133.19.170.151

⑧ 133.19.170.14 (A)

⑨ 133.19.170.14 (A)

⑩ 133.19.170.14 (A)

← 再帰名前解決

← 反復名前解決



digコマンド

19

$ dig www.ritsumei.ac.jp

;; QUESTION SECTION:
;www.ritsumei.ac.jp. IN A

;; ANSWER SECTION:
www.ritsumei.ac.jp. 7896 IN A 133.19.170.14

再帰名前解決

$ dig +norec @198.41.0.4 www.ritsumei.ac.jp
;; QUESTION SECTION:
;www.ritsumei.ac.jp. IN A
;; AUTHORITY SECTION:
jp. 172800 IN NS a.dns.jp.
;; ADDITIONAL SECTION:
a.dns.jp. 172800 IN A 203.119.1.1

$ dig +norec @203.119.1.1 www.ritsumei.ac.jp
;; QUESTION SECTION:
;www.ritsumei.ac.jp. IN A
;; AUTHORITY SECTION:
ritsumei.ac.jp. 86400 IN NS rundz1151.ritsumei.ac.jp.
;; ADDITIONAL SECTION:
rundz1151.ritsumei.ac.jp. 86400 IN A 133.19.170.151

$ dig +norec @133.19.170.151 www.ritsumei.ac.jp
;; QUESTION SECTION:
;www.ritsumei.ac.jp. IN A
;; ANSWER SECTION:
www.ritsumei.ac.jp. 10800 IN A 133.19.170.14

反復名前解決



属性ベース名前付け

• 一般にディレクトリサービスと呼ばれている
⁃ エンティティは（属性，値）の集合を持つ
⁃ 属性の値によりエンティティを検索できる
⁃ （例）電子メイルの場合，メイルは「送信者」「受信者」「件名」などの
属性を持つ

• リソース記述フレームワーク（Resource Description 
Framework, RDF）
⁃ 各エンティティの属性値を統一的に管理ための仕組み
⁃ エンティティに対応する各リソースを（主語，述語，目的語）で記述
⁃ （例）（Person, name, Alice）は「名前（name）」が「Alice」であるよ
うな「人（Person）」であることを示す

20



LDAP (Lightweight Directory Access Protocol) 
• 属性ベース名前付けと構造化した名前付けを組み合わせた
ディレクトリサービス

• （attribute, value）で各レコードを記述

21

Attribute Abbr. Value
Country C NL
Locality L Amsterdam
Organization O Vrije Universiteit
OrganizationalUnit OU Comp. Sc.
CommonName CN Main server
Mail_Servers - 137.37.20.3, 130.37.24.6, 137.37.20.10
FTP_Server - 130.37.20.20
WWW_Server - 130.37.20.20

• 名前解決は大局的に一意な名前を用いて行われる
/C=NL/O=Vrije Universiteit/OU=Comp. Sc./CN=Main_Server


