
分散システム

双見 京介（FUTAMI Kyosuke）
高田秀志（TAKADA Hideyuki）

2025年10月
1

第4回通信

通信技術の発展

• 有線通信から無線通信へ
– 固定電話から携帯電話へ
– イーサネットから無線LANへ
– ICタグの登場（鉄道乗車用パスなど）

• さらなる高速化
– 10メガイーサネットから10ギガイーサネットへ
– 無線LANはIEEE 802.11b（11Mbps）からIEEE 802.11ax（9.6Gbps）へ
– 携帯電話網は5G（第5世代移動通信システム）へ

• 異機種間相互接続
– 様々な種類の機器を相互に接続（インターネットプロトコル）
– クラウドコンピューティング，エッジコンピューティング，セン
サネットワーク 2

分散システムにおける通信技術の捉え方

• コンピュータは「データを処理し，伝達する機械」
• 分散システムは，このような機械が要素（コンポーネ
ント）として複数動作しているもの

• 通信技術により，コンポーネント間のデータの伝達を
実現

• 様々な通信技術により実現されるデータの伝達の仕
組みを抽象化して扱う

• 抽象化された仕組みは，様々な用途に利用可能

3

通信機能の階層化

• レイヤ Li のコンポーネントはレ
イヤ Li-1 のコンポーネントを利
用する

• レイヤ Li はレイヤ Li-1 の機能を
利用して要求を発行し，応答を
受け取る

• レイヤ Li はレイヤ Li-1 より下の
レイヤについては関知しない

• 例えば，Webブラウザは，HTTP
というレイヤのみに依存し，実
際の接続が無線LANなのか携
帯電話網なのかなどについて
関知しない 4

Layer N

Layer N-1

Layer 2

Layer 1

要求の流れ 応答の流れ

階層化アーキテクチャ
（Layered architecture）

サービスとプロトコル

• <N+1>階層は，直下の<N>サービス
を利用して<N+1>サービスが提供す
る機能を実現

• 階層間ではサービスプリミティブ（要
求・指示・応答・確認）により相互に
作用

5

<N+1>階層

<N>階層 <N>サービス

<N+1>サービス

要求

指示

応答

確認

<N+1>エンティティ<N+1>階層

<N>階層

<N+1>エンティティ
<N+1>プロトコル

<N>エンティティ

<N>SAP

<N>エンティティ

<N>SAP

<N>プロトコル

<N+1>サービス<N+1>SAP <N+1>SAP

<N>サービス

SAP: Service Access Point

• <N>階層の目的とする機能を実
現するための通信規約を<N>プ
ロトコルと呼ぶ

• <N>プロトコルの処理を行う主体
を<N>エンティティと呼ぶ

• <N+1>エンティティは<N>SAPを
利用して<N>エンティティにアク
セスする

プロセスB

OSI参照モデル
(Open System Interconnection Basic Reference Model)

• マシン1のプロセスAとマ
シン2のプロセスBは送信
されるビット列の意味に
ついて合意する必要が
ある

• OSIモデルでは，通信が
7階層に分割される

• 各階層は，その上の階
層にインタフェースを提
供する

• インタフェースは操作の
集合から構成され，ユー
ザに対してサービスを提
供する

6

アプリケーション層

プレゼンテーション層

セッション層

トランスポート層

ネットワーク層

データリンク層

物理層

アプリケーションプロトコル

プレゼンテーションプロトコル

セッションプロトコル

トランスポートプロトコル

ネットワークプロトコル

データリンクプロトコル

物理プロトコル

ネットワーク

7

6

5

4

3

2

1

マシン1

プロセスA

マシン2

OSI参照モデルにおける各階層の役割

1. 物理層
– ビット列の伝送を行うための機

械的・電気的規約
– 送受信タイミング，片方向/半二

重/全二重伝送などの取り決め
2. データリンク層

– ビット列のフレーム化
– フレームの順序制御，誤り制御

3. ネットワーク層
– ネットワークアドレス処理
– 中継処理

4. トランスポート層
– エンドシステム間の転送機能

– パケットの紛失や順序誤りに対
する制御

7

5. セッション層
– アプリケーション間の情報の流

れの同期を制御

6. プレゼンテーション層
– アプリケーション間で相互に理

解可能なデータ表現の提供
– データ型変換，暗号化，圧縮

7. アプリケーション層
– エンドユーザにサービスを提供
– 電子メール，ファイル転送等

階層化ネットワークにおけるメッセージ

• マシン1のプロセスAはメッセージを構成し，アプリケーション層に渡す
• アプリケーション層はメッセージの最初に「ヘッダ」を追加し，それをプレゼ
ンテーション層に渡す

• メッセージがマシン2に到着すると，それぞれの階層でヘッダを外しながら，
上の階層へ渡していく

• 最終的に，送られたメッセージがマシン2のプロセスBに届く

8

メッセージ データリンク層トレイラ

アプリケーション層ヘッダ

プレゼンテーション層ヘッダ

セッション層ヘッダ

トランスポート層ヘッダ

ネットワーク層ヘッダ

データリンク層ヘッダ

ネットワーク上に実際に現れるビット列

TCP/IP参照モデル
• 特定のベンダに依存しないオープンな
プロトコル

• 各階層の役割
1. ホスト対ネットワーク層

− コンピュータとネットワークのインタフェース

− イーサネット，各種広域ネットワークなど

2. インターネット層
− IPアドレスの規定
− パケット転送サービスの提供

3. トランスポート層
− プロセス間の通信を規定

− コネクション型のTCP，コネクションレス型の
UDP

4. アプリケーション層
− ユーザに対するサービスに関わる規定

− ファイル転送（FTP），メール配信（SMTP），
Web（HTTP）など

9

アプリケーション層

トランスポート層

インターネット層

ホスト対ネットワーク層

プロトコルの例

• 下位層
– Ethernet, Wi-fi, 5G
– IP (Internet Protocol)

• トランスポート層プロトコル
– TCP (Transmission Control Protocol)
– UDP (Universal Datagram Protocol)
– RTP (Real-time Transport Protocol)

• 上位層
– HTTP (HyperText Transfer Protocol)
– FTP (File Transfer Protocol)

10

メッセージ指向通信

• 一時（Transient）通信
– ソケット通信
– アプリケーションは，ソケットと呼ばれるエンドポイント
に対してデータの読み書きを行うことにより，ネットワー
ク通信を行うことができる

– 送信者と受信者が同時に動作していることが必要

• 永続（Persistent）通信
– メッセージキューイングシステム
– 送信者と受信者の中間に記憶領域を配置することに
より，両者が同時に動作していることを必要としない

11

ソケット通信

• Berkeley UNIXで導入されたプロセス間通信の枠組み

• ファイルの読み出し（read）と書き込み（write）の概念を用い
て，プロセス間通信を抽象化
– ファイルが通信路のイメージ
– 片方のプロセスがwriteしたデータを，もう一方のプロセスがreadする

• ソケットを利用するためのシステムコールを用いてプロセス
間通信を実現

12

クライアント

サーバ

socket()

socket() bind() listen() accept() read() write() close()

connect() write() read() close()

接続要求 接続完了 要求 応答

Pythonによるソケット通信

13

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM);
s.bind(('192.168.1.1', 3000))
s.listen(5)

conn, addr = s.accept()
data = conn.recv(1024)
print('data: {}, addr: {}'.format(data,addr))

conn.sendall(b'Received: ' + data)

s.close()

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM);
s.connect(('192.168.1.1', 3000))
s.sendall(b'Hello')
data = s.recv(1024)
print(data)
s.close()

クライアント

サーバ

• 単純化のため，本来必要な例外処理は省いている
• C言語によるソケット通信プログラムは教科書を参照のこと

メッセージキューイングシステム

14

送信者 受信者

キュー キュー

キューに対する基本インタフェース

Put: キューにメッセージを追加
Get: キューにメッセージが入るまでブロック，最初のメッセージを取り出して削除
Poll: キューをチェックし，メッセージがあれば取り出して削除，ブロックしない
Notify: キューにメッセージが入ったときに呼び出されるハンドラを設定

送信者

受信者

キュー

Put m1

Get m1

ブロック
される

Put m2

Poll m2

ブロック
されない

Notify

Put m3

Get

m3

ハンドラ
呼び出し

遠隔手続き呼び出し（Remote Procedure Call, RPC）

• プロセス間のメッセージ交換のための「Send手続
き」と「Receive手続き」では透過性を提供しない

• RPCは他のマシンに存在する手続き（C言語で言う
関数）を呼び出すことを可能にする

– マシンAのプロセスがマシンBの手続きを呼び出すと，
マシンA上の呼び出し側のプロセスが一旦停止し，呼
び出された手続きがマシンB上で実行される

– 呼び出した側と呼び出された側がパラメータや返り値
により情報を交換する

• メッセージのやりとりはプログラマには見えない
15

通常の手続き呼び出し

16

int add(int x, int y) {
return x+y;

}

int main() {
int a = 3;
int b = 7;
int sum = add(a,b);
printf(“sum = %d”, sum);

}

arg 2
arg 1
返り値

プログラムカウンタ

b
a

sum

スタック

手続き間の情報交換に使われる

RPCの原理

17

int main() {
int a = 3;
int b = 7;
int sum = add(a,b);
printf(“sum = %d”, sum);

}

int add(int x, int y) {
パラメータのマーシャリング（marshalling）;
ネットワークへのパラメータの送出(send);
ネットワークからの返り値の受け取り(receive);
返り値のアンマーシャリング（unmarshalling）;

}

int add(int x, int y) {
return x+y;

}

int recvRPC{
パラメータのアンマーシャリング;
手続きadd()の呼び出し;
返り値のマーシャリング;
返り値のネットワークへの送出;

}

クライアントマシン サーバマシン

ネットワーク

クライアントスタブ サーバスタブ

• sendやreceiveの呼び出しはアプリケーションコードには見えず，
通常の関数呼び出しに見える

• クライアントスタブおよびサーバスタブのソースコードは，開発
環境により自動生成される

アプリケーションコード アプリケーションコード

透過性の提供

RPCの実行手順
1. クライアント側の手続きは，クライアントスタブを通常と同じように呼び出す

2. クライアントスタブはメッセージを構築し（マーシャリングし），OSのsend機能を呼
び出す

3. クライアント側のOSはサーバ側のOSへメッセージを送信する

4. サーバ側のOSはメッセージをサーバスタブへ渡す

5. サーバスタブはメッセージを取り出し（アンマーシャリングし），サーバ側の手続
きを呼び出す

6. サーバ側の手続きは処理を実行し，結果をサーバスタブに返す

7. サーバスタブは返り値をメッセージの中に格納し，OSのsend機能を呼び出す

8. サーバ側のOSはクライアント側のOSへメッセージを送信する

9. クライアント側のOSはメッセージをクライアントスタブに渡す

10. クライアントスタブは返り値を取り出し，クライアント側の手続きに返す

18

パラメータ渡し

19

0x0018という整数値と"TARO"という文字列をパラメータとして
クライアントからサーバへ送る場合

8
0

1
1

0
2

0
3

T
4

A
5

R
6

O
7

クライアント（Intel型・リトルエンディアン）

0x0018

"TARO"

Intelでは上位バイト・下位バイトが反転

文字列はそのまま

サーバ（SPARC型・ビッグエンディアン）

8
0

1
1

0
2

0
3

T
4

A
5

R
6

O
7

SPARCではバイト順
はそのまま

このまま解釈すると0x8100になっ
てしまうので，バイト順を逆転

ネットワークを介して送信

文字列はそのまま解釈

0
0

0
1

1
2

8
3

T
4

A
5

R
6

O
7 解釈後のパラメータ

何バイト目かを表す数

RPCの種別（1）

20

クライアント

サーバ

遠隔手続きの
呼び出し

結果の返信

結果待ち

手続きの実行と
結果の返信

時間

要求

呼び出しから
戻る

同期型（Synchronous）RPC

クライアント

サーバ

遠隔手続きの
呼び出し

受理の返信

受理待ち

手続きの実行
時間

要求

呼び出しから
戻る

非同期型（Asynchronous）RPC

• クライアントプロセスは，遠隔手続きの呼び
出し後，待ち状態へ入る（ブロックされる）

• サーバプロセスは，手続きの実行が終了後，
結果をクライアントプロセスに返す

• 「サーバが手続きを実行中，クライアントは
動作を停止している」という意味で「同期型」

• サーバプロセスは，要求を受理したことを手
続きの実行前にクライアントプロセスに返す

（同期型に比べてクライアントがブロックさ
れる時間は短くなる）

• 手続きの実行はクライアントへの返信後に
行われるので，結果をクライアントへ返すこ
とはできない

• 「サーバが手続きを実行中でも，クライアン
トは別の処理を行える」という意味で「非同
期型」

RPCの種別（2）

21

クライアント

サーバ

遠隔手続きの
呼び出し

受理の返信

受理待ち

手続きの実行 時間

要求

呼び出しから
戻る

同期保留型（Deferred Synchronous）RPC

結果の返信 承認

片方向RPCによる
クライアントの呼び出し

クライアントへの割り込み

• サーバプロセスは，要求を受理したことを手続きの実行前にクライアントプロセス
に返すという点では非同期型と同じ

• 手続きの実行後，サーバプロセスはクライアントへの割り込み処理によって手続
きの実行結果を返す（非同期型のクライアントとサーバを逆転させたものと同じ）

• 「サーバからクライアントへ手続き実行の結果を返す」という意味では「同期型」
であるが，一旦受理通知だけを返信し，結果の返信は手続き実行が終了するま
で「保留」する

OSF DCEによるRPCの実装

22

uuidgen

インタフェース
定義ファイル

IDLコンパイラ

クライアント
コード

ヘッダ
クライアント
スタブ

サーバ
スタブ

サーバ
コード

Cコンパイラ Cコンパイラ Cコンパイラ Cコンパイラ

クライアント

オブジェクトファイル

クライアントスタブ
オブジェクトファイル

サーバスタブ
オブジェクトファイル

サーバ
オブジェクトファイル

リンカ

クライアント
実行ファイル

リンカ

サーバ
実行ファイル

実行時
ライブラリ

実行時
ライブラリ

#include #include

OSF: Open Software Foundation
DCE: Distributed Computing Environment

• インタフェース定義ファイル（IDF）を
記述することにより，クライアント
スタブとサーバスタブを自動生成

• プログラマはIDFとクライアントコー
ド，サーバコードを書く

