
分散システム

双見 京介（FUTAMI Kyosuke）
高田秀志（TAKADA Hideyuki）

2025年10月
1

第1回分散システム概説



分散（Distributed）システムとは

• 分散システムの例・・・今日のほぼすべての情報システム
– X(Twitter)，LINE，Facebook，オンラインゲーム，Web
– ATM，コンビニ端末，自動券売機，自動改札機
– ネット家電，スマートスピーカー，自動運転車（将来）

• 複数のコンピュータと，それらを接続するネットワーク
により構成される

• 分散システムの対義語は集中（Centralized）システム
– １台のコンピュータからのみ構成される
– 単一プロセッサ（single-processor）システムとも呼ばれる

2



分散システムの定義

• 「独立したコンピュータの集合」
– 複数のコンピュータにより構成されている
– それぞれのコンピュータは単独でも動作できる

• 「単一で首尾一貫したシステム」
– ユーザには複数のコンピュータにより構成されていること
を意識させない

– 処理結果や状態に何の矛盾もない
3

「分散システムは，そのユーザに対して単一で首尾一貫し
たシステムとして見える独立したコンピュータの集合であ
る」 （参考書 「分散システム ―原理とパラダイム― 第２版」に基づく）



分散システムの典型的構成

• 一つのサーバが多くの
クライアントと通信する

• データベースは，サー
ビスで提供されるコン
テンツを格納する

• ユーザはサーバの存
在を意識していない

4

サーバ

データベース

クライアント



ユーザと開発者の視点

5

旅行予約
旅行予約サイト
サーバ

航空会社
サーバ

ホテルチェーン
サーバ

予約
データベース

予約
データベース

顧客
データベース

ユーザ

開発者

ユーザは背後に膨大な
システムがあることを
意識せずに利用できる

ユーザに背後に膨大なシステムがあること
を意識させないようなシステムを構築する

背後がどうなっているのかが本科目の主題



分散処理と並列処理

6

そもそも
分散している
もの

ユーザ端末
アプリケーション
サーバ

データベース
サーバ

異質の役割を果たす
要素が連携して動作
（分散処理）分散していない場合を

考えても意味がない

あえて
分散させている

もの

マスタノード

ワーカノード
・
・
・処理要求

処理結果

同質の役割を果たす
要素（ワーカノード）が
連携して動作
（並列処理）

性能や耐故障性の向上
を目的として分散させる

多くの分散システムの中では，分散処理と並列処理が共存している
（例：負荷分散されたWebアプリ）

例：Webアプリ

例：ビッグデータ処理

Distributed processing Parallel processing



集中・非集中・分散

7

複数のコンピュータの接続形態による分類

集中
（Centralized）

非集中
（Decentralized）

分散
（Distributed）

サーバが一つ 複数のサーバが連携 クライアントとサーバの
区別がない



分散システムの目的

• リソースへのアクセス性向上
– 遠隔のリソース（プリンタ，コンピュータ，ファイルなど）が，
制御されかつ効率的な方法で他のユーザと共有できる

• 分散透過性（Distribution transparency）
– 分散システムのプロセスやリソースが複数のコンピュータ
にまたがって物理的に分散している事実を隠蔽する

• 開放性（Openness）
– サービスは，サービスのシンタックスとセマンティクスを記
述するための標準規則に従って提供される

• スケーラビリティ（Scalability）
– システムは，その大きさや地理的な領域，管理的側面に
おいて拡張できなければならない

8



分散透過性

種類 内容

アクセス（access）透過性 データ表現規則やリソースへのアクセス方法の違いを
隠蔽

位置（location）透過性 リソースの物理的な存在位置を隠蔽

移動（migration）透過性 リソースの位置の変化を隠蔽

再配置（relocation）透過性 使用中のリソースの移動を隠蔽

複製（replication）透過性 リソースが複製されていることを隠蔽

並行（concurrency）透過性 複数プロセスによるリソース利用の競合を隠蔽

障害（failure）透過性 システム内に発生した障害を隠蔽

9

ユーザに対して「単一で首尾一貫したシステム」として
見せるために，複雑な処理・構成を隠蔽する（隠す）

すべての透過性を高い水準で実現することは現実的ではないので，
技術的限界，要求事項，コストなどに応じて個別に判断が必要



分散透過性による隠蔽（１）

• アクセス透過性
– クライアントやサーバの様々な違い（CPU，OS，インタフェース等）に依
らず，リソース（ファイル等）にアクセス可能

• 位置透過性
– サーバ（例えば，www.ritsumei.ac.jp）が物理的にどこに存在している
かを知らなくてもアクセス可能

• 移動透過性
– サーバ内のファイルが別のディレクトリに移動されても，ユーザやクラ
イアントは同じ方法（例えば，同じURL）でアクセス可能

• 再配置透過性
– スマートフォンを利用しながら移動しても，ユーザは切断されることな
く継続して利用可能

10



分散透過性による隠蔽（２）

• 複製透過性
– 遠くのサーバにあるデータを一時的にクライアントにコピーしても，
ユーザはコピーされていることを気にせずに利用可能（Webブラウザ
のキャッシュ）

– ユーザが意識することなくデータのバックアップを保存

• 並行透過性
– 共有プリンタや共有ファイルを，他の人と共有していることを気にせ
ずに利用可能

• 障害透過性
– サーバの一部が故障しても，ユーザはシステムを継続して利用可能
– システムが故障から回復した場合，ユーザは気にせずに利用可能

11



開放性

• 分散システムにおけるサービスは，「インタフェース定義
言語」（Interface Definition Language, IDL）に記述された
「インタフェース」によって規定される
– 機能の名前
– パラメータの型
– 返り値
– 発生しうる例外

• 異なる実装が共存し，一緒に動作できる（相互運用性，
Interoperability）

• システムAのために構築されたアプリケーションが，修正を
行わなくても，異なるシステムBの上で実行できる（可搬性，
Portability）

12



開放性の実現例

• 例えば「電源コンセント」
– どのメーカの機器でも接続可能（相互運用性）
– 規格が統一され，公開されている

• 分散システムにおけるプロトコルの開放

13

「プロトコルが開かれていること」が重要

Webサーバ

Webサーバとブラウザ間のプロトコ
ルが公開されているので，Webは
様々なブラウザで利用可

Weiboサーバ

公式アプリ

Weico

独自アプリ

Weiboサーバへのアクセス仕様（API）が公開
されているため，第三者がアプリを開発可

HTTP

W
ei

bo
 A

PI

interoperability



スケーラビリティの必要性

• 分散システムにおけるボトルネック
– CPUの計算能力（多数の処理）
– ストレージの容量（大量のデータ）
– ネットワークの帯域（大量の通信）

• スケーラビリティの観点
– 大きさ

• ユーザやリソースの数が増える
– 地理的な広がり

• ユーザやリソース間の距離が増える（通信遅延が発生）
– 管理組織

• 相互接続されたシステムを管理する組織の数が増える
14



スケーラビリティの技法

• 非同期（Asynchronous）通信
– サーバからの応答を待つのではなく，要求側で他の作
業を実行する

– WebプラットフォームのAJAX（Asynchronous JavaScript + 
XML）で実現

• 配信（Distribution）
– コンポーネントを複数の小さな部分に分割し，システム
全体に散らばらせる

– インターネット上のDNS（Domain Name Service）
• 複製（Replication）とキャッシュ（caching）
– コンポーネントをシステム内に複製する
– 一貫性（Consistency）の問題が発生する

15



分散システムの特性

• どのマシンもシステムの状態に関するすべての情報
を持たない

– どのサーバやクライアントが動作しているのか/止まって
いるのかをすべて知っているマシンはない

• マシンはローカルな情報のみに基づいて判断する
– プログラムがアクセスできるのはマシン内のメモリのみ

• グローバルクロックが存在するという仮定はない
– すべてのマシンが正確に時刻を知ることはできない
– すべてのマシンが同期して動作することは困難

16



分散システムの制約

1. ネットワークは信頼性がある
2. ネットワークはセキュアである
3. ネットワークは均一である
4. トポロジーは変化しない
5. 遅延は存在しない
6. 帯域幅は無限である
7. 転送コストはゼロである
8. 存在する管理者は唯一である

17

開発者が陥りやすい誤解（Pitfalls，落とし穴）

Peter Deutsch (1994) and James Gosling (1997)



本科目で習得すること

• アーキテクチャ・・・分散システムの構成
• プロセス・・・分散システムの動作
• 通信・・・分散システム内のデータのやり取り
• 名前付け・・・分散システムで用いられる名前
• 一貫性と複製・・・分散システムで行われるデータのコピー
• セキュリティ・・・分散システムの安全性
• フォールトトレラント性・・・分散システムにおける障害対策

18


